# I. Physics of pair producing gaps in black hole magnetospheres

Yajie Yuan & Alexander Y. Chen (Princeton University)

## Physics of the gap

- In black hole jets, the plasma supply in the funnel region has been a long standing problem.
- Centrifugal barrier prevents accretion material to penetrate into the jet. But plasma is required to conduct the BZ current.



Mościbrodzka et al 2011

## Physics of the gap



- Where does pair creation happen? What is the dynamics of the gap?
- How much energy is dissipated in the gap?

cf. Beskin et al. 1992; Hirotani & Okamoto 1998; Broderick & Tchekhovskoy 2015; Hirotani & Pu 2016; Levinson & Segev 2017; Levinson & Cerutti 2018; Parfrey et al 2019; etc.

#### Full GR 1D PIC simulations

- 1D dynamics in full GR along a flux tube taken from global GR force-free solutions
- Particle motion confined to field lines, like bead on a wire
- Electrostatic gap develops when charge/current density deviates from background (force-free) values
- Fully self-consistent IC scattering and γγ pair production processes
- GPU GRPIC code Aperture developed by Alex Chen



#### Full GR 1D PIC simulations



Highly time dependent, quasi-periodic gap dynamics!

## II. Formation of lamp-post coronae in Seyfert Galaxies

Yajie Yuan (Spitzer Fellow, Princeton)

In collaboration with: Roger Blandford, Dan Wilkins (Stanford) and Anatoly Spitkovsky, Alex Chen (Princeton)





Urry & Padovani

## X-ray coronae in Seyfert Galaxies

- Spiral galaxies, M ~ 10<sup>6</sup>–10<sup>8</sup> M<sub>☉</sub>, Radio quiet
- $L \sim 0.01 1 L_{Edd}$
- Lx ~ Lo/uv



#### typical local reflection spectrum



#### Lamppost coronae?

- Reverberation mapping
- Emissivity profile modeling
- Microlensing

#### Iron K lag in NGC 4151







#### Questions to answer

- Why is the corona so compact, and located at such a special place (a few gravitational radii above the BH)?
- Why is the X-ray luminosity so high?
- Is this relevant to the radio loud/quiet dichotomy?

## On jet formation...



McKinney et al 2012

## Solar corona analogy?



Magnetic "carpet" above the disk: e.g., Uzdensky & Goodman 2008

A Possible scenario: tangling of small scale flux tubes near the axis



A Possible scenario: tangling of small scale flux tubes near the axis



A Possible scenario: tangling of small scale flux tubes near the axis



A Possible scenario: tangling of small scale flux tubes near the axis



## A simple toy model

Force-free electrodynamics:

$$\rho \mathbf{E} + \mathbf{j} \times \mathbf{B} = 0$$

Neglect plasma inertia and thermal effects (good approximation outside the disk)

Magnetic stress pushes/pulls the field around!

## A simple toy model

- We use the time-dependent, relativistic force-free code originally developed by Anatoly Spitkovsky (2006)
- Setup: a central compact object is rotating and twisting up the field, while the accretion disk is non-rotating

(cf. Parfrey et al 2015, axisymmetric GRFFE simulations)



Yuan et al, arXiv1901.02834



## A black hole twisting up the field

Black hole is like a resistive sphere!

What's the extent of the closed zone?



Yuan, Blandford & Wilkins 2018 Previous study: Uzdensky 2004, 2005

#### Time dependent simulation—a test case

- We use the time-dependent, relativistic force-free code originally developed by Anatoly Spitkovsky (2006)
- Mimicking the electromagnetic effect of the black hole using a rotating, resistive membrane in flat spacetime
  - On the membrane, in corotating frame,  $B_{\parallel}$ '= $4\pi K$ ,  $E_{\parallel}$ '=RK= $4\pi K$ = $B_{\parallel}$ ', where K is the surface current, R= $4\pi$  is the surface resistivity





#### A test case

- A rotating resistive membrane disk ("BH") surrounded by a perfectly conducting, non-rotating disk ("accretion disk")
- Confined situation



#### A test case

#### Unconfined situation



#### A test case

Transitional regime: m=1 instability



#### Poynting flux



Yuan et al, arXiv1901.02834

## Simulation with resistive electrodynamics formalism & radiation signatures



Formalism following Li, Spitkovsky & Tchekhovskoy 2012

## Light curves and power spectra



#### Summary and Perspectives

- Compact, Lamppost-like coronae seem typical from observations
- Possible dissipation mechanisms:
  - Reconnection due to tangled small scale flux tubes near the axis may be a viable mechanism
  - This can be tested using GR force-free simulations, and maybe MHD simulations in the future.
- Next steps: understanding the microphysics of dissipation and particle acceleration using kinetic simulations